781 words
4 minutes
MD Notes 1 - Semiconductor Physics

Semiconductor#

  • crystalline 单晶硅: wafar
  • amorphous 太阳能电池

Semiconductor Physics Recap#

Semiconductor Materials#

Materials with intermediate conductivity and features sensitive to physical variables.

Atomic structures:

  • Crystalline: Highly ordered atomic structure, wafar
  • Polycrystalline: A cluster of multiple crystalline grains.
  • Amorphous: Disordered atomic structure, PV cells.

Types:

  • Elemental
    • IV group: Ge at first, then Si, recently C.
  • Compound
    • III+V group, pronounced three-five semiconductors: AsGa, AlP.

Elemental: Diamond Cubic Structure#

价电子 valence electrons. 共价键 covalent bound.

Each Si atom has 4 nearest neighbors. Lattice constant: 5.431A˚\AA (1010m)(10^{-10}m).
Number of atoms in a unit cell: 4+8/8+6/2=84 + 8/8 + 6/2 = 8
Density of silicon atoms: 8 atoms / cell volumn = 5×10225\times 10^{22} atoms/cm3.
Inpurity consentration: 1012101910^{12} - 10^{19} atoms/cm3.

Compound: Zinc Blende Structure#

III-V compound. GaAs, GaP, GaN. High electron mobility, for high-speed ICs.

Crystallographic Notation#

  • (h k l): crystal plane 晶面,截距倒数通分取分母
  • {h k l}: equivalent plane 晶面族
  • [h k l]: direction
  • <h k l>: equivalent direction
    h: inverse x intercept. k: inverse y. l: inverse z.

立方晶系中6个等同的{100},12个等同的{110},8个等同的{111}晶面。

Atom density is higher viewed in <100> direction -> lower carrier speed on that plane.

Energy Band#

泡利不相容:同一状态(主量子数n+角量子数l+磁量子数m+自旋量子数s)最多被一个费米子占据。费米子:遵循费米—狄拉克统计的粒子。

电子排布3p23p^2:第三层(主量子数n=3)p亚层(角量子数l=1)有2个电子。

Si:[Ne]3s23p2Si: [Ne]\quad3s^2\quad3p^2。自由空间独立原子,3p层所有轨道在一个能级,3s层在另一个。两个Si原子靠近,形成8个价电子的系统,3p/3s能级分别分裂成两个。N个Si原子组成晶格,3p/3s层各有2N个填充的状态(每个价电子占据一个),形成价带,也各有2N个空状态,形成导带。

  • Valence Band: Highest nearly-filled band.
  • Conduction Band: Lowest nearly-empty band
  • EcE_c: Bottom edge of the conduction band.
  • EvE_v: Top edge of the valence band.
  • EGE_G: Separation between EcE_c and EvE_v.

Band gap of common materials:

  • Si:EG=1.12eVSi: E_G = 1.12 eV @ 300K\
  • SiO2:EG=9eVSiO_2: E_G = 9 eV\
  • Metals have no band gap (conduction band is partially filled)\
  • Graphene = 0\

When temp rises, the lattice transform a little bit, resulting in a changed solution of quantum mechanics, and a shrunk band gap -> temp sensors.

Measurement: minimum energy of photons that is absorbed by the semiconductor. 价带顶电子吸收能量跃迁到导带。

Density of States:#

g(E)dEg(E)\rm{d}E = number of states per cm3 in the energy range between EE and E+dEE+\rm{d}E.

Electron effective mass 电子有效质量, mnm_n^*

Concentration of Carriers#

To change the concentration of carriers:

  • Adding impurity atoms (dopants)
  • Applying an electric field
  • Changing the temperature
  • Irradiation 辐照

Intrinsic (本征) carrier concentration of silicon: ni1010cm3n_i \approx 10^{10} cm^{-3}

In a pure semiconductor,

n=p=nin = p = n_i

In a doped semiconductor, at thermal equilibrium (热平衡状态) Law of Mass Action:

np=ni2n \cdot p = n_i^{2}

Hole#

Mobile positive charge associated with a half-filled covalent bond.

Holes and electrons are not necessarily in pairs. 极子器件.

Doping#

Substituting a Si atom with a special impurity atom. (Group III/V)

  • Donor ionization energy: Separation between EcE_c and donor level EDE_D
  • Accepttor ionization energy: EAEvE_A - E_v
    大概几十个meV,随杂质原子序数增大而提高

Donor/acceptor level are close to the EcE_c or EvE_v so ionization is easy.

  • Ionized donor concentration: NDN_D
  • Ionized acceptor concentration: NAN_A
  • Net dopant concentration: NDNAN_D - N_A

Charge neutrality condition: ND+p=NA+nN_D + p = N_A + n

When ND>>NAN_D >> N_A

nNDpni2/NDn \approx N_D \qquad p \approx n_i^2/N_D

  • Majority carrier: the most abundant.\
  • Minority carrier: the least abundant.

Thermal dynamics#

Fermi-Dirac Distribution#

The probability that energy level E is occupied. Occupied = by electron, empty = occupied by hole.

There is only one Fermi level in a system at equilibrium (multiple with externel electrical field),

f(E)=11+eEEFkTf(E) = \frac{1}{1+e^{-\frac{E-E_F}{kT}}}

Maxwell-Boltzman Distribution:#

f(E)eEEFkT,EEF>>kT(EEF>3kT)f(E) \approx e^{-\frac{E-E_F}{kT}} \qquad ,E-E_F >> kT \quad (E-E_F > 3kT)

f(E)1eEFEkT,EEF<<kTf(E) \approx 1-e^{-\frac{E_F-E}{kT}} \qquad,E-E_F << -kT

简并(Degenerate)半导体:必须用F-D分布,非简并可以用M-B分布。

Summary#

alt text

  • Thermal equilibrium: No external forces, no electric field, no magnetic field, no mechanical stress, no light.
MD Notes 1 - Semiconductor Physics
http://tsaoo.github.io/resrvplot/posts/microelectronic-devices/week2-semiconductor-phy/semiconductor-phy/
Author
Zhiyang Cao
Published at
2024-11-07