958 words
5 minutes
MD Notes 5 - PN Junction

P-N Junctions#

Built-in Potential VbiV_{bi}#

Positive charge is left on n-side, and negative on p-side, so the potential on n-side is higher. The electrons in the depletion layer tend to drift to n-side, indicating EcE_c bends lower on n-side.

With respect to the uniform EFE_F, energy band on n-side is lowered by EFEiE_F - E_i, and that on p-side is lifted by EiEFE_i - E_F.

qVbi=(EiEF)pside+(EFEi)nsideqV_{bi} = (E_i - E_F)_{p-side} + (E_F - E_i)_{n-side}

On n-side,

n=nieEFEikTn = {n_i}{e^{\frac{{{E_F} - {E_i}}}{{kT}}}}

so,

(EFEi)nside=kTln(nni)=kTln(NDni)\left({E_F} - {E_i}\right)_{n-side} = kT\ln \left( {\frac{n}{{{n_i}}}} \right) = kT\ln \left( {\frac{{{N_D}}}{{{n_i}}}} \right)

similarly,

(EiEF)pside=kTln(pni)=kTln(NAni){\left( {{E_i} - {E_F}} \right)_{p - side}} = kT\ln \left( {\frac{p}{{{n_i}}}} \right) = kT\ln \left( {\frac{{{N_A}}}{{{n_i}}}} \right)

then VbiV_{bi} is a function of NDN_D of n-side and NAN_A of p-side.

Vbi=kTqln(NANDni2){V_{bi}} = \frac{{kT}}{q}\ln \left( {\frac{{{N_A}{N_D}}}{{n_i^2}}} \right)

For p+n\rm p^+n junction, NA,pside>>ND,nsideN_{A,p-side} >> N_{D,n-side}, ln(ND/ni)\ln\left(N_D/n_i\right) is negligible (notice NDN_D is still larger than nin_i).

Vbi=kTqln(NAni)V_{bi} = \frac{kT}{q}\ln\left(\frac{N_A}{n_i}\right)

Electric Field in Depletion Layer#

  • The Depletion Approximation: Charge density on p-side is ρ=qNA\rho = -qN_A and that on n-side is ρ=qND\rho = qN_D.
  • Poisson’s Equation:

d2Vdx2=dEdx=ρεs\frac{{{{\text{d}}^2}V}}{{{\text{d}}{x^2}}} = - \frac{{{\text{d}}E}}{{{\text{d}}x}} = - \frac{\rho }{{{\varepsilon _s}}}

On p-side, letting electric field at x=xpx=-x_p to be zero,

dEdx=qNAεsE(x)=qNAεs(x+xp)\frac{{{\text{d}}E}}{{{\text{d}}x}} = - \frac{{q{N_A}}}{{{\varepsilon _s}}} \qquad E(x) = - \frac{{q{N_A}}}{{{\varepsilon _s}}}\left( {x + {x_p}} \right)

On n-side letting E-field at x=xnx=x_n to be zero,

dEdx=qNDεsE(x)=qNAεs(xxn)\frac{{{\text{d}}E}}{{{\text{d}}x}} = \frac{{q{N_D}}}{{{\varepsilon _s}}} \qquad E(x) = \frac{{q{N_A}}}{{{\varepsilon _s}}}\left( {x - {x_n}} \right)

The electric field should be continuous at x=0x=0, leading to

NAxp=NDxn{N_A}{x_p} = {N_D}{x_n}

Depletion width of the lightly doped side is narrower.

Electric Potential in Depletion Layer#

V(x)=V(x0)x0xE(x)dxV(x) = V({x_0}) - \int\limits_{{x_0}}^x {E(x'){\text{d}}x'}

On p-side, let x0=xpx_0 = -x_p and V(xp)=0V(-x_p) = 0,

V(x)=qNA2εs(x+xp)2V(x) = \frac{{q{N_A}}}{{2{\varepsilon _s}}}{\left( {x + {x_p}} \right)^2}

On n-side, let x0=xnx_0 = x_n and V(xn)=VbiV(x_n) = V_{bi},

V(x)=VbiqND2εs(xxn)2V(x) = {V_{bi}} - \frac{{q{N_D}}}{{2{\varepsilon _s}}}{\left( {x - {x_n}} \right)^2}

The electric potential should also be continuous at x=0x=0,

qNA2εsxp2=VbiqND2εsxn2\frac{{q{N_A}}}{{2{\varepsilon _s}}}x_p^2 = {V_{bi}} - \frac{{q{N_D}}}{{2{\varepsilon _s}}}x_n^2

Depletion Layer Width#

With the electric field and electric potential continuity equations, xnx_n and xpx_p are solvable.

xp=2εsVbiq(NDNA(NA+ND)){x_p} = \sqrt {\frac{{2{\varepsilon _s}{V_{bi}}}}{q}\left( {\frac{{{N_D}}}{{{N_A}\left( {{N_A} + {N_D}} \right)}}} \right)}

xn=2εsVbiq(NAND(NA+ND)){x_n} = \sqrt {\frac{{2{\varepsilon _s}{V_{bi}}}}{q}\left( {\frac{{{N_A}}}{{{N_D}\left( {{N_A} + {N_D}} \right)}}} \right)}

W=xn+xp=2εsVbiq(1NA+1ND)W = {x_n} + {x_p} = \sqrt {\frac{{2{\varepsilon _s}{V_{bi}}}}{q}\left( {\frac{1}{{{N_A}}} + \frac{1}{{{N_D}}}} \right)}

Define 1/N=(1/NA+1/ND)1/N = \left( 1/N_A + 1/N_D \right)

For one-sided junction at equilibrium, the built-in potential is determined by the heavily doped side, while the depletion layer width is determined by the lightly doped side.

Vbi,p+n=kTqlnNAni{V_{bi,{{\text{p}}^ + }{\text{n}}}} = \frac{{kT}}{q}\ln \frac{{{N_A}}}{{{n_i}}}

Wp+nxn=2εsVbiqND{W_{{{\text{p}}^ + }{\text{n}}}} \cong {x_n} = \sqrt {\frac{{2{\varepsilon _s}{V_{bi}}}}{{q{N_D}}}}

Reversed-Biased PN Junction#

The superimposed electric field enhances the built-in electric field, widening the depletion layer.

W=2εs(Vbi+Vr)qNW = \sqrt {\frac{{2{\varepsilon _s}\left( {{V_{bi}} + \left| {{V_r}} \right|} \right)}}{{qN}}}

Where Vbi+VrV_{bi} + \left| V_r \right| is defined as the potential barrier.

Capacitance-Voltage Characteristics#

Cdep=AϵsWdepC_{dep} = A\frac{\epsilon_s}{W_{dep}}

1C2=2(Vbi+Vr)qNεsA2\frac{1}{{{C^2}}} = \frac{{2\left( {{V_{bi}} + \left| {{V_r}} \right|} \right)}}{{qN{\varepsilon _s}{A^2}}}

The slope of 1/C21/C^2 to VrV_r can be used to determine NhN_h and NlN_l. First, use the slope to determine NlN_l, then assume the intercept to be VbiV_{bi} and use VbiV_{bi} to calculate NhN_h.

Peak Electric Field#

The peak electric field is at x=0x=0:

Epeak=E(0)=2qNεs(Vbi+Vr)=2(Vbi+Vr)W{E_{peak}} = E\left( 0 \right) = \sqrt {\frac{{2qN}}{{{\varepsilon _s}}}\left( {{V_{bi}} + \left| {{V_r}} \right|} \right)} = \frac{{2\left( {{V_{bi}} + \left| {{V_r}} \right|} \right)}}{W}

Breakdown#

Given the critical electric field strength of certain material EcritE_{crit},

VBD=εsEcrit22qNVbi{V_{BD}} = \frac{{{\varepsilon _s}E_{crit}^2}}{{2qN}} - {V_{bi}}

There are two types of mechanism of breakdown:

  • Tunneling Breakdown: Dominant if both sides of a junction are very heavily doped.
  • Avalanche Breakdown: Energetic electron cause impact ionization, resulting in a positive feedback.

Forward-Biased PN Junction#

Apply the forward biasing voltage VAV_A, and assume VA<VbiV_A < V_{bi} for low-level injection conditions.

alt text

alt text

At equilibrium, a small number of electrons on the n-side gains enough energy to overcome the barrier and diffuse to the p-side, but the drifting of the minority electron on p-side balances the diffusion, so no net current.

With a forward bias voltage VA>0V_A > 0, the diffusion overshadows the drifting, so more minority carriers are injected and then recombine with majority carriers in the quasi-neutral regions.

Under low-level injection conditions, the majority carrier concentration at the edge of depletion layer remains the same.

pp(xp)=NAnn(xn)=ND{p_p}( - {x_p}) = {N_A} \qquad {n_n}({x_n}) = {N_D}

In the depletion layer, the distribution of pp and nn follows their quasi-Fermi levels:

p=nieEiEFPkTn=nieEFNEikTp = {n_i}{e^{\frac{{{E_i} - {E_{FP}}}}{{kT}}}} \qquad n = {n_i}{e^{\frac{{{E_{FN}} - {E_i}}}{{kT}}}}

Although the EFPE_{FP} and EFNE_{FN} is not known yet, pnpn can be derived by:

pn=ni2eEFNEFPkT=ni2eqVAkTpn = n_i^2{e^{\frac{{{E_{FN}} - {E_{FP}}}}{{kT}}}} = n_i^2{e^{\frac{{q{V_A}}}{{kT}}}}

np(xp)=ni2eqVAkTNApn(xn)=ni2eqVAkTND{n_p}( - {x_p}) = \frac{{n_i^2{e^{\frac{{q{V_A}}}{{kT}}}}}}{{{N_A}}} \qquad {p_n}({x_n}) = \frac{{n_i^2{e^{\frac{{q{V_A}}}{{kT}}}}}}{{{N_D}}}

At equilibrium EFN=EFPE_{FN} = E_{FP}. WHAT DOES THAT MEAN?

alt text

Minority Carrier Distribution in Quasi-Neutral Region#

The minority carriers injected due to VAV_A recombine with the majority carrier in the quasi-neutral region.

For excess holes on n-side, the holes flowing out of an element volume is the holes flowing in minus the holes recombined within the volume.

AJp(x+Δx)q=AJp(x)qAΔxΔpτA\frac{{{J_p}(x + \Delta x)}}{q} = A\frac{{{J_p}(x)}}{q} - A\Delta x\frac{{\Delta p}}{\tau }

dJpdx=qΔpτ\frac{{{\text{d}}{J_p}}}{{{\text{d}}x}} = - q\frac{{\Delta p}}{\tau }

Assuming the minority drift current is negligible,Jp=qDPdpdx{J_p} = - q{D_P}\frac{{{\text{d}}p}}{{{\text{d}}x}}

d2Δpdx2=ΔpDPτp=ΔpLp2\frac{{{{\text{d}}^2}\Delta p}}{{{\text{d}}{x^2}}} = \frac{{\Delta p}}{{{D_P}{\tau _p}}} = \frac{{\Delta p}}{{L_p^2}}

The boundary conditions are Δp()=0\Delta p(\infty) = 0 and Δp(xn)=pn(xn)pn0(xn)\Delta p(x_n) = p_n(x_n) - p_{n0}(x_n) (refer to the slide screenshot above).

Δp(x)=pn0(eqVkT1)exxnLP\Delta p(x) = {p_{n0}}\left( {{e^{\frac{{qV}}{{kT}}}} - 1} \right){e^{ - \frac{{x - {x_n}}}{{{L_P}}}}}

alt text

Total Current#

The total current density is uniform throughout the junction, and at xnx_n there is Jtotal=JpN(xn)+JnN(xn)J_{total} = J_{pN}(x_n) + J_{nN}(x_n). Notice JnN(xn)=JnP(xp)J_{nN}(x_n) = J_{nP}(-x_p), and the minority carrier diffusion current can be derived from

JpN=qDPdpdxJnP=qDNdndx{J_{pN}} = - q{D_P}\frac{{{\text{d}}p}}{{{\text{d}}x}} \qquad {J_{nP}} = q{D_N}\frac{{{\text{d}}n}}{{{\text{d}}x}}

So the total current is:

Jtotal=JpN(xn)+JnP(xp)=(qDPLPpn0+qDnLnnp0)(eqVkT1){J_{total}} = {J_{pN}}({x_n}) + {J_{nP}}( - {x_p}) = \left( {q\frac{{{D_P}}}{{{L_P}}}{p_{n0}} + q\frac{{{D_n}}}{{{L_n}}}{n_{p0}}} \right)\left( {{e^{\frac{{qV}}{{kT}}}} - 1} \right)

Which is proportional to eqV/kT1e^{qV/kT}-1, so

I=I0(eqVkT1)I = {I_0}\left( {{e^{\frac{{qV}}{{kT}}}} - 1} \right)

Where

I0=Aqni2(DPLPND+DNLNNA){I_0} = Aqn_i^2\left( {\frac{{{D_P}}}{{{L_P}{N_D}}} + \frac{{{D_N}}}{{{L_N}{N_A}}}} \right)

The higher the temperature, the higher the current.

Contributions from Depletion Region#

The space-charge region current adds a leakage to II,

I=I0(eqVkT1)+AqniWτ(eqV2kT1)I = {I_0}\left( {{e^{\frac{{qV}}{{kT}}}} - 1} \right) + A\frac{{q{n_i}W}}{\tau }\left( {{e^{\frac{{qV}}{{2kT}}}} - 1} \right)

Small Signal Model#

alt text

MD Notes 5 - PN Junction
http://tsaoo.github.io/resrvplot/posts/microelectronic-devices/week6-pn-junction/pnj/
Author
Zhiyang Cao
Published at
2024-11-07